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Some moment properties
of skew-symmetric circular distributions

Summary - Many popular circular distributions, including the most commonly used
von Mises distribution, are typically symmetric around a modal direction. To enlarge
this class, the authors recently discussed families of skew-symmetric distributions,
applying this idea to the von Mises model as an important special case. This paper
explores further properties of these skew-symmetric families and their moments.
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1. Introduction

Umbach and Jammalamadaka (2009) introduced a class of circular skew
symmetric distributions, along the lines of Azzalini and Capitanio (2003), which
introduced a more general form of the skew-symmetric distributions originally
introduced by Azzalini (1985). In this work, we consider some monotonicity
properties of the trigonometric moments of such distributions. Recall that a
circular pdf is a non-negative periodic function which integrates to one over
intervals of length 2π (see for instance Section 2.1 of Jammalamadaka and
SenGupta (2001)). Functions f (·) which satisfy

f (θ + 2π) = f (θ) for all θ (1)

will be simply referred to as periodic. The actual period, possibly less than
2π , plays no role in what follows.

In particular, the authors showed that if

(i) f and g are circular densities which are symmetric about 0,
(ii) G(θ) = ∫ θ

−π g(α) dα, and
(iii) w is odd and periodic with |w(θ)| ≤ π for all θ ,

Received June 2009 and revised January 2010.



266 DALE UMBACH – SREENIVAS RAO JAMMALAMADAKA

then
fμ(θ) = 2 f (θ − μ)G(w(θ − μ)) (2)

is a circular density for each real number μ. The choice of −π for the lower
limit of the integral defining G is because we will consider the support of
the distributions herein as being over θ ∈ [−π, π) throughout. The resulting
density is typically asymmetric. In what follows we study some properties
of the trigonometric moments of these distributions, particularly aspects of
monotonicity.

2. Basic results

The results in this paper follow primarily from the lemmas that we state
and prove in this section. They establish useful properties of expected values
of even (h(−θ) = h(θ) for all θ) and odd (h(−θ) = −h(θ) for all θ) functions
of random variables which have skew symmetric circular distributions defined
in Equation (2).

In what follows, ho is an odd function. It is convenient to define D+
o =

{θ |−π ≤ θ < π and ho(θ) > 0} and D−
o = {θ |−π ≤ θ < π and ho(θ) < 0}. In

addition to (i), (ii), and (iii), the lemmas are based on the following hypotheses:

(iv) For the odd function ho, and θ ∈ D+
o , w(θ) ≥ 0 and for θ ∈ D−

o , w(θ) ≤ 0.
(v) For the odd function ho, and θ ∈ D+

o , w(θ) ≤ 0 and for θ ∈ D−
o , w(θ) ≥ 0.

(vi) he is even and periodic.

Conditions (i), (ii), and (iii) insure that fμ in (2) is indeed a circular density.
The density labeled f0 in the three lemmas below is such a density with μ = 0.

The other conditions insure various monotonicity properties as described in the
lemmas. The lemmas are presented together with, insofar as possible, a unified
proof. The linear version of Lemma 2 was established in Azzalini and Capitanio
(2003).

Lemma 1. Hypotheses (i), (ii), (iii), and (iv) imply that

0 =
∫ π

−π

ho(θ) f (θ) dθ ≤
∫ π

−π

ho(θ) f0(θ) dθ ≤ 2
∫

D+
o

ho(θ) f (θ) dθ.

Lemma 1a. Hypotheses (i), (ii), (iii), and (v) imply that

−2
∫

D+
o

ho(θ) f (θ) dθ ≤
∫ π

−π

ho(θ) f0(θ) dθ ≤
∫ π

−π

ho(θ) f (θ) dθ = 0.

Lemma 2. Hypotheses (i), (ii), (iii), and (vi) imply that∫ π

−π

he(θ) f (θ) dθ =
∫ π

−π

he(θ) f0(θ) dθ =
∫ π

0
2 he(θ) f (θ) dθ.
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Proof. The symmetry of f and the fact that ho is odd implies
∫ π

−π ho(θ) f (θ)dθ =
0. Now, note that

∫ π

−π

ho(θ) f0(θ) dθ

=
∫

D+
o

ho(θ) 2 f (θ) G(w(θ)) dθ +
∫

D−
o

ho(θ) 2 f (θ) G(w(θ)) dθ

=
∫

D+
o

ho(θ) 2 f (θ) G(w(θ)) dθ−
∫

D+
o

ho(γ ) 2 f (γ ) (1−G(w(γ )) dγ (3)

= 2
∫

D+
o

ho(θ) 2 f (θ) G(w(θ)) dθ −
∫

D+
o

ho(θ) 2 f (θ) dθ (4)

≤ 2
∫

D+
o

ho(θ) 2 f (θ) dθ −
∫

D+
o

ho(θ) 2 f (θ) dθ (5)

= 2
∫

D+
o

ho(θ) f (θ) dθ.

Note that (3) follows from the symmetry of g, which necessitates G(w(θ)) =
1−G(−w(θ)) for all θ, and the fact that w is odd, followed by the substitution
γ = −θ in the second integral. The inequality in (5) is established by noting
that G(w(θ)) ≤ 1 for all θ.

One establishes that

∫ π

−π

ho(θ) f0(θ) dθ ≥ 0

by using (iv) to see that for θ ∈ D+
o , we have w(θ) ≥ 0. Thus (i) and (ii)

yield G(w(θ)) ≥ 1/2 for these values of θ and thus 2 G(w(θ)) ≥ 1. The result
then follows from (4), completing the proof of Lemma 1.

For the proof of Lemma 1a, we note that the above development holds
through (4). Noting that the first integral of (4) is positive, we see that

∫ π

−π

ho(θ) f0(θ) dθ ≥ −2
∫

D+
o

ho(θ) f (θ) dθ.

The proof is completed by noting that (v) implies that 2 G(w(θ)) ≤ 1 for
θ ∈ D+

o , and thus we see that (4) is less than or equal to 0.
For Lemma 2, note that the symmetry of f and he about 0 implies

∫ π

−π

he(θ) f (θ) dθ =
∫ π

0
2he(θ) f (θ) dθ.
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Now ∫ π

−π

he(θ) f0(θ) dθ

=
∫ π

0
he(θ) 2 f (θ) G(w(θ)) dθ +

∫ 0

−π

he(θ) 2 f (θ) G(w(θ)) dθ

=
∫ π

0
he(θ) 2 f (θ) G(w(θ))dθ +

∫ π

0
he(θ) 2 f (θ)(1 − G(w(θ))dθ

=
∫ π

0
2 he(θ) f (θ) dθ,

which completes the proof.

3. Trigonometric moments

For a circular random variable !, the pth trigonometric moment ϕp, is
defined by

ϕp = E(ei p !) = E(cos p !) + i E(sin p !) = αp + i βp.

If we define the function Atan by

Atan(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arctan(y/x) for x > 0

arctan(y/x) + π for x < 0, y > 0

arctan(y/x) − π for x < 0, y ≤ 0

π/2 for x = 0, y > 0

−π/2 for x = 0, y < 0,

then Atan(α1, β1) gives the mean direction of the distribution. The length
of ϕp is ρp =

√
α2

p + β2
p. The value of ρ1 is used as a basic measure of

concentration around the mean (see again Section 2.1 of Jammalamadaka and
SenGupta (2001)).

In this section, we consider trigonometric moments of three distributions
related to (2) with w having the additional property that w(θ) ≥ 0 for 0 ≤ θ ≤
π. With μ = 0, the trigonometric moments and related quantities of the kernel,
f , will be denoted with a superscript of o as ϕo

p, for example. These quantities
will have a superscript of ′ for the distribution f0 of (2) (with μ = 0) and will
have a superscript of ∗ for the folded distribution 2 f (θ) for 0 ≤ θ < π .

Since ho(θ) = sin θ is an odd function with D+
o = (0, π), Lemma 1 can

be applied to conclude that

0 = βo
1 ≤ β ′

1 ≤ β∗
1 . (6)
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While ho(θ) = sin p θ is also an odd function, we cannot establish results
similar to (6) for arbitrary p because D+

o varies with p. However, since
he(θ) = cos p θ is an even function, Lemma 2 allows us to conclude that
αo

p = α′
p = α∗

p for all p. We will denote the common value simply by αp.

These results immediately yield

ρo
1 ≤ ρ ′

1 ≤ ρ∗
1 .

Thus, we see that the concentration of the three distributions is greatest for the
kernel, smallest for the folded distribution, and is between these extremes for
the skew symmetric distribution. These results parallel those that have been
established for the variance in the linear case by Umbach (2006). Using (6), we
see that μo = 0, of course. Now, μ′ = Atan(α1, β

′
1) and μ∗ = Atan(α1, β

∗
1 ).

Since arctan is increasing, we obtain the monotonicity result for the mean
direction that

0 = μo ≤ μ′ ≤ μ∗ < π.

If in addition αo
1 = 0, then we have an interesting situation because we then

also have α′
1 = α∗

1 = 0. In this case, if the mean of the skewed distribution
exists, it will be μ′ = Atan(0, β ′

1) = π/2. A condition that guarantees αo
1 = 0

is that the kernel f is symmetric about π/2 in addition to the symmetry about
0. In this case, we have f (θ) = f (π − θ) for π/2 ≤ θ ≤ π in addition to
f (θ) = f (−θ). Thus, we see that

αo
1 =

∫ π

−π

cos(θ) f (θ) dθ

=
∫ 0

−π

cos(θ) f (θ) dθ +
∫ π

0
cos(θ) f (θ) dθ

= 2
∫ π

0
cos(θ) f (θ) dθ

= 2
∫ π/2

0
cos(θ) f (θ) dθ + 2

∫ π

π/2
cos(θ) f (θ) dθ

= 2
∫ π/2

0
cos(θ) f (θ) dθ − 2

∫ π/2

0
cos(γ ) f (γ ) dγ = 0,

using the substitution γ = π − θ. By (6), the mean direction will exist if
β ′

1 > 0. Using (4) with h(θ) = sin θ we see that

β ′
1 = 2

∫ π

0
sin(θ) f (θ) (G(w(θ)) − 1) dθ,

which will be positive if there exists an open interval in (0, π) on which both
w(θ) > 0 and f (θ) > 0.
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4. Parametric families

By incorporating one or more parameters in the definition of w, we can
introduce families of distributions. Judicious choices of such parameters will
lead to the original distribution as a member of the family with sufficient vari-
ation about it to produce a useful family for modeling purposes. For example,
if w(θ) = λ π sin(k θ) for some integer k, then we get a family of distributions
from (2) given by

2 f (θ − μ)G(λ π sin(k(θ − μ)))

for −1 ≤ λ ≤ 1. The choice of λ = 0 produces the original distribution because
we must have G(0) = 1/2.

Quite generally, we will consider the family of distributions { f ′
λ} for −1 ≤

λ ≤ 1 given by
f ′
λ(θ) = 2 f (θ) G(λ w(θ)) (7)

where f , G, and w satisfy (i), (ii), and (iii) of Section 2. Let ϕp(λ) =
αp(λ) + iβp(λ) be the pth trigonometric moment of f ′

λ. However, since each
f ′
λ has the form (2), we see that

αo
p = αp(λ) = α∗

p.

Thus, αp(λ) is constant in λ. So we suppress the variable λ and simply write
αp for the common value. Under these conditions, we obtain the monotonicity
result that ϕp(λ) = α1 + iβ1(λ) with β1(λ) increasing with λ, as is shown in
Theorem 1.

Theorem 1. Suppose that conditions (i), (ii), and (iii) hold and f ′
λ is given by (7)

with w(θ) ≥ 0 for 0 ≤ θ < π and −1 ≤ λ ≤ 1.
Then

ϕ1(λ) =
∫ π

−π

ei θ f ′
λ(θ) dθ = α1 + i β1(λ),

where β1(λ) is an increasing function of λ.

Proof. Note that

β1(λ) =
∫ π

−π

sin(θ) f (θ)2G(λw(θ))dθ

=
∫ π

0
sin(θ) f (θ)2G(λw(θ))dθ +

∫ 0

−π

sin(θ) f (θ)2G(λw(θ))dθ

=
∫ π

0
sin(θ) f (θ)2G(λw(θ))dθ −

∫ π

0
sin(θ) f (θ)2G(−λw(θ))dθ

=
∫ π

0
sin(θ) f (θ)2[G(λw(θ)) − G(−λw(θ))]dθ.

(8)
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Since w(θ) ≥ 0 for 0 ≤ θ ≤ π, we find that G(λ w(θ)) − G(−λ w(θ)) is an
increasing function of λ for each θ , and thus (8) is an increasing function of
λ. Since λ w(θ) satisfies (iii) of Lemma 2 for each λ and cos θ is even, we
establish that ∫ π

−π

cos(θ) f ′
λ(θ) dθ

does not depend on λ, which thus yields the result.
If one does not stipulate that either w(θ) ≥ 0 for 0 ≤ θ ≤ π or w(θ) ≤ 0

for 0 ≤ θ ≤ π , then monotonicity results will be difficult to establish. This
can be seen from (8). Monotonicity results will be quite messy if one has
G(λ w(θ)) − G(−λ w(θ)) increasing for some values of θ and decreasing for
others. Note also that β1(λ) is a decreasing function of λ if the sign condition
on w is reversed.

Note that one may use π sin θ for w(θ) in (iii). If this is combined with
G from the uniform distribution over [−π, π), i.e. G(θ) = (π +θ)/2π, we see
that for symmetric f that f ′

λ = f (θ)(1 + λ sin θ) is a skew symmetric circular
distribution. In addition, β1(λ) can be expressed as 2 λ

∫ π

0 sin2 θ f (θ) dθ .

5. A Skew-symmetric von Mises distribution

The density of the skewed von Mises distribution, as presented in Umbach
and Jammalamadaka (2009), namely

vλ(θ; κ) = eκ cos θ

2π I0(κ)
(1 + λ sin θ) (9)

for −1 ≤ λ ≤ 1, has a density of the form described at the very end of
the last section. (Note that Ip(κ) is the modified Bessel function of the first
kind of order p.) Following Umbach and Jammalamadaka (2009), we define
Ap(κ) = Ip(κ)/I0(κ). We note that α1 = A1(κ) and

β1(λ) = 2λ

∫ π

0
sin2(θ)

eκ cos θ

2π I0(κ)
dθ = (λ/κ)A1(κ).

More generally, we find that the pth trigonometric moment of this distribution
has components αp = Ap(κ) and

βp(λ) =
∫ π

−π

sin(p θ)vλ(θ; κ)dθ

=
∫ π

−π

sin(p θ)v0(θ; κ)dθ + λ

∫ π

−π

sin(θ) sin(p θ)v0(θ; κ)dθ

= λ (p/κ)Ap(κ).

(10)
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We establish (10) by an integration by parts on the second integral with u =
sin p θ and v = −eκ cos θ/κ . Thus, we see that the pth trigonometric moment of
(9) has a straightforward form based on the modified Bessel functions of orders
p and 0. The pth trigonometric moment of the von Mises distribution is Ap(κ)

when μ = 0. This allows us to see that (10) is consistent with the expression
for the pth trigonometric moment given in Theorem 2 of Jammalamadaka and
Umbach (2009) which has the form Ap(κ) + i(λ/2)(Ap−1(κ) − Ap+1(κ)) when
μ = 0. The equivalence is established by noting that Ip−1(κ) − Ip+1(κ) =
(2 p/κ)Ip(κ) as is shown, for example, in Relton (1965).

6. Summary

We see that the trigonometric moments (particularly the first) of skew-
symmetric circular distributions as given in (2) have identifiable monotonicity
properties. These parallel the linear monotonicity results of Umbach (2006 and
2008).

As shown at the end of Section 4, one can form a skew-symmetric circular
density from a symmetric one, say f , by f ′

λ = f (θ)(1 + λ sin θ) for −π ≤
θ ≤ π . In particular, if this is used to skew the von Mises distribution, we
find that the pth trigonometric moment has the form

ϕ′
p = Ap(κ)(1 + i λp/κ),

where Ap is a ratio of modified Bessel functions as defined in Section 5. This
distribution is studied in some detail in Abe and Pewsey (2009).
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